3.36 \(\int x \cosh ^{-1}(a x)^4 \, dx\)

Optimal. Leaf size=120 \[ -\frac {\cosh ^{-1}(a x)^4}{4 a^2}-\frac {3 \cosh ^{-1}(a x)^2}{4 a^2}+\frac {1}{2} x^2 \cosh ^{-1}(a x)^4+\frac {3}{2} x^2 \cosh ^{-1}(a x)^2-\frac {x \sqrt {a x-1} \sqrt {a x+1} \cosh ^{-1}(a x)^3}{a}-\frac {3 x \sqrt {a x-1} \sqrt {a x+1} \cosh ^{-1}(a x)}{2 a}+\frac {3 x^2}{4} \]

[Out]

3/4*x^2-3/4*arccosh(a*x)^2/a^2+3/2*x^2*arccosh(a*x)^2-1/4*arccosh(a*x)^4/a^2+1/2*x^2*arccosh(a*x)^4-3/2*x*arcc
osh(a*x)*(a*x-1)^(1/2)*(a*x+1)^(1/2)/a-x*arccosh(a*x)^3*(a*x-1)^(1/2)*(a*x+1)^(1/2)/a

________________________________________________________________________________________

Rubi [A]  time = 0.60, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5662, 5759, 5676, 30} \[ -\frac {\cosh ^{-1}(a x)^4}{4 a^2}-\frac {3 \cosh ^{-1}(a x)^2}{4 a^2}+\frac {1}{2} x^2 \cosh ^{-1}(a x)^4+\frac {3}{2} x^2 \cosh ^{-1}(a x)^2-\frac {x \sqrt {a x-1} \sqrt {a x+1} \cosh ^{-1}(a x)^3}{a}-\frac {3 x \sqrt {a x-1} \sqrt {a x+1} \cosh ^{-1}(a x)}{2 a}+\frac {3 x^2}{4} \]

Antiderivative was successfully verified.

[In]

Int[x*ArcCosh[a*x]^4,x]

[Out]

(3*x^2)/4 - (3*x*Sqrt[-1 + a*x]*Sqrt[1 + a*x]*ArcCosh[a*x])/(2*a) - (3*ArcCosh[a*x]^2)/(4*a^2) + (3*x^2*ArcCos
h[a*x]^2)/2 - (x*Sqrt[-1 + a*x]*Sqrt[1 + a*x]*ArcCosh[a*x]^3)/a - ArcCosh[a*x]^4/(4*a^2) + (x^2*ArcCosh[a*x]^4
)/2

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5662

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcC
osh[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1))/(Sqr
t[-1 + c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rule 5759

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_
.)*(x_)]), x_Symbol] :> Simp[(f*(f*x)^(m - 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n)/(e1*e2*m
), x] + (Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)^(m - 2)*(a + b*ArcCosh[c*x])^n)/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*
x]), x], x] + Dist[(b*f*n*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(c*d1*d2*m*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[(f*x)
^(m - 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0]
&& EqQ[e2 + c*d2, 0] && GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rubi steps

\begin {align*} \int x \cosh ^{-1}(a x)^4 \, dx &=\frac {1}{2} x^2 \cosh ^{-1}(a x)^4-(2 a) \int \frac {x^2 \cosh ^{-1}(a x)^3}{\sqrt {-1+a x} \sqrt {1+a x}} \, dx\\ &=-\frac {x \sqrt {-1+a x} \sqrt {1+a x} \cosh ^{-1}(a x)^3}{a}+\frac {1}{2} x^2 \cosh ^{-1}(a x)^4+3 \int x \cosh ^{-1}(a x)^2 \, dx-\frac {\int \frac {\cosh ^{-1}(a x)^3}{\sqrt {-1+a x} \sqrt {1+a x}} \, dx}{a}\\ &=\frac {3}{2} x^2 \cosh ^{-1}(a x)^2-\frac {x \sqrt {-1+a x} \sqrt {1+a x} \cosh ^{-1}(a x)^3}{a}-\frac {\cosh ^{-1}(a x)^4}{4 a^2}+\frac {1}{2} x^2 \cosh ^{-1}(a x)^4-(3 a) \int \frac {x^2 \cosh ^{-1}(a x)}{\sqrt {-1+a x} \sqrt {1+a x}} \, dx\\ &=-\frac {3 x \sqrt {-1+a x} \sqrt {1+a x} \cosh ^{-1}(a x)}{2 a}+\frac {3}{2} x^2 \cosh ^{-1}(a x)^2-\frac {x \sqrt {-1+a x} \sqrt {1+a x} \cosh ^{-1}(a x)^3}{a}-\frac {\cosh ^{-1}(a x)^4}{4 a^2}+\frac {1}{2} x^2 \cosh ^{-1}(a x)^4+\frac {3 \int x \, dx}{2}-\frac {3 \int \frac {\cosh ^{-1}(a x)}{\sqrt {-1+a x} \sqrt {1+a x}} \, dx}{2 a}\\ &=\frac {3 x^2}{4}-\frac {3 x \sqrt {-1+a x} \sqrt {1+a x} \cosh ^{-1}(a x)}{2 a}-\frac {3 \cosh ^{-1}(a x)^2}{4 a^2}+\frac {3}{2} x^2 \cosh ^{-1}(a x)^2-\frac {x \sqrt {-1+a x} \sqrt {1+a x} \cosh ^{-1}(a x)^3}{a}-\frac {\cosh ^{-1}(a x)^4}{4 a^2}+\frac {1}{2} x^2 \cosh ^{-1}(a x)^4\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 104, normalized size = 0.87 \[ \frac {3 a^2 x^2+\left (2 a^2 x^2-1\right ) \cosh ^{-1}(a x)^4+\left (6 a^2 x^2-3\right ) \cosh ^{-1}(a x)^2-4 a x \sqrt {a x-1} \sqrt {a x+1} \cosh ^{-1}(a x)^3-6 a x \sqrt {a x-1} \sqrt {a x+1} \cosh ^{-1}(a x)}{4 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x*ArcCosh[a*x]^4,x]

[Out]

(3*a^2*x^2 - 6*a*x*Sqrt[-1 + a*x]*Sqrt[1 + a*x]*ArcCosh[a*x] + (-3 + 6*a^2*x^2)*ArcCosh[a*x]^2 - 4*a*x*Sqrt[-1
 + a*x]*Sqrt[1 + a*x]*ArcCosh[a*x]^3 + (-1 + 2*a^2*x^2)*ArcCosh[a*x]^4)/(4*a^2)

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 138, normalized size = 1.15 \[ -\frac {4 \, \sqrt {a^{2} x^{2} - 1} a x \log \left (a x + \sqrt {a^{2} x^{2} - 1}\right )^{3} - {\left (2 \, a^{2} x^{2} - 1\right )} \log \left (a x + \sqrt {a^{2} x^{2} - 1}\right )^{4} - 3 \, a^{2} x^{2} + 6 \, \sqrt {a^{2} x^{2} - 1} a x \log \left (a x + \sqrt {a^{2} x^{2} - 1}\right ) - 3 \, {\left (2 \, a^{2} x^{2} - 1\right )} \log \left (a x + \sqrt {a^{2} x^{2} - 1}\right )^{2}}{4 \, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccosh(a*x)^4,x, algorithm="fricas")

[Out]

-1/4*(4*sqrt(a^2*x^2 - 1)*a*x*log(a*x + sqrt(a^2*x^2 - 1))^3 - (2*a^2*x^2 - 1)*log(a*x + sqrt(a^2*x^2 - 1))^4
- 3*a^2*x^2 + 6*sqrt(a^2*x^2 - 1)*a*x*log(a*x + sqrt(a^2*x^2 - 1)) - 3*(2*a^2*x^2 - 1)*log(a*x + sqrt(a^2*x^2
- 1))^2)/a^2

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccosh(a*x)^4,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.04, size = 104, normalized size = 0.87 \[ \frac {\frac {a^{2} x^{2} \mathrm {arccosh}\left (a x \right )^{4}}{2}-\mathrm {arccosh}\left (a x \right )^{3} \sqrt {a x -1}\, \sqrt {a x +1}\, a x -\frac {\mathrm {arccosh}\left (a x \right )^{4}}{4}+\frac {3 a^{2} x^{2} \mathrm {arccosh}\left (a x \right )^{2}}{2}-\frac {3 \,\mathrm {arccosh}\left (a x \right ) a x \sqrt {a x -1}\, \sqrt {a x +1}}{2}-\frac {3 \mathrm {arccosh}\left (a x \right )^{2}}{4}+\frac {3 a^{2} x^{2}}{4}}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arccosh(a*x)^4,x)

[Out]

1/a^2*(1/2*a^2*x^2*arccosh(a*x)^4-arccosh(a*x)^3*(a*x-1)^(1/2)*(a*x+1)^(1/2)*a*x-1/4*arccosh(a*x)^4+3/2*a^2*x^
2*arccosh(a*x)^2-3/2*arccosh(a*x)*a*x*(a*x-1)^(1/2)*(a*x+1)^(1/2)-3/4*arccosh(a*x)^2+3/4*a^2*x^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{2} \, x^{2} \log \left (a x + \sqrt {a x + 1} \sqrt {a x - 1}\right )^{4} - \int \frac {2 \, {\left (a^{3} x^{4} + \sqrt {a x + 1} \sqrt {a x - 1} a^{2} x^{3} - a x^{2}\right )} \log \left (a x + \sqrt {a x + 1} \sqrt {a x - 1}\right )^{3}}{a^{3} x^{3} + {\left (a^{2} x^{2} - 1\right )} \sqrt {a x + 1} \sqrt {a x - 1} - a x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccosh(a*x)^4,x, algorithm="maxima")

[Out]

1/2*x^2*log(a*x + sqrt(a*x + 1)*sqrt(a*x - 1))^4 - integrate(2*(a^3*x^4 + sqrt(a*x + 1)*sqrt(a*x - 1)*a^2*x^3
- a*x^2)*log(a*x + sqrt(a*x + 1)*sqrt(a*x - 1))^3/(a^3*x^3 + (a^2*x^2 - 1)*sqrt(a*x + 1)*sqrt(a*x - 1) - a*x),
 x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x\,{\mathrm {acosh}\left (a\,x\right )}^4 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*acosh(a*x)^4,x)

[Out]

int(x*acosh(a*x)^4, x)

________________________________________________________________________________________

sympy [A]  time = 2.05, size = 110, normalized size = 0.92 \[ \begin {cases} \frac {x^{2} \operatorname {acosh}^{4}{\left (a x \right )}}{2} + \frac {3 x^{2} \operatorname {acosh}^{2}{\left (a x \right )}}{2} + \frac {3 x^{2}}{4} - \frac {x \sqrt {a^{2} x^{2} - 1} \operatorname {acosh}^{3}{\left (a x \right )}}{a} - \frac {3 x \sqrt {a^{2} x^{2} - 1} \operatorname {acosh}{\left (a x \right )}}{2 a} - \frac {\operatorname {acosh}^{4}{\left (a x \right )}}{4 a^{2}} - \frac {3 \operatorname {acosh}^{2}{\left (a x \right )}}{4 a^{2}} & \text {for}\: a \neq 0 \\\frac {\pi ^{4} x^{2}}{32} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*acosh(a*x)**4,x)

[Out]

Piecewise((x**2*acosh(a*x)**4/2 + 3*x**2*acosh(a*x)**2/2 + 3*x**2/4 - x*sqrt(a**2*x**2 - 1)*acosh(a*x)**3/a -
3*x*sqrt(a**2*x**2 - 1)*acosh(a*x)/(2*a) - acosh(a*x)**4/(4*a**2) - 3*acosh(a*x)**2/(4*a**2), Ne(a, 0)), (pi**
4*x**2/32, True))

________________________________________________________________________________________